Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 316
1.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569016

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Alzheimer Disease , Microglia , Humans , Mice , Animals , Microglia/metabolism , Antibodies/metabolism , Receptors, Cell Surface/metabolism , Amyloid/metabolism , Disease Models, Animal , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Leukocytes/metabolism , Mice, Transgenic , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
2.
Biomolecules ; 14(3)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38540792

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Encephalitis Virus, Japanese , Hydrogen , Animals , Mice , Epitope Mapping/methods , Encephalitis Virus, Japanese/metabolism , Deuterium/chemistry , Antibodies, Viral , Epitopes/chemistry , Antibodies, Neutralizing , Mass Spectrometry/methods , Antibodies, Monoclonal
3.
Biochemistry ; 63(5): 610-624, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38357882

In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.


Calmodulin , Myosin Heavy Chains , Testis , Male , Animals , Testis/metabolism , Deuterium/metabolism , Amino Acid Sequence , Calmodulin/metabolism , Protein Binding , Drosophila/metabolism , Mass Spectrometry , Calcium/metabolism
4.
Am J Bioeth ; : 1-14, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38376507

Since 2022, the EU, US, and other nations have imposed medical sanctions on Russia to block the export of pharmaceuticals and medical devices and curtail clinical trials to degrade Russia's military capabilities. While international law proscribes sanctions that cause a humanitarian crisis, an outcome averted in Russia, the military effects of medical sanctions have been lean. Strengthening medical sanctions risks violating noncombatant and combatant rights to healthcare. Each group's claim is different. Noncombatants and severely injured soldiers who cannot return to duty enjoy the right to adequate health care that sanctions cannot undermine. Combatants falling captive enjoy the same medical care that adversaries provide their own troops. Combatants yet to renounce hostilities, however, have no claim to medical attention and remain subject to sanctions. Nevertheless, medical sanctions prove unworkable in this complex environment of conflicting rights and command no place in a sustainable sanction regime.

5.
Bioethics ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38385575

Both trolleys and war leave innocent victims to suffer death and injury. Trolley problems accounting for the injured, and not only the dead, tease out intuitions about liability that enhance our understanding of the obligation to provide compensation and medical care to civilian victims of war. Like many trolley victims, civilians in war may suffer justifiable, excusable, or negligent harms that demand compensation. Chief among these is collateral harm befalling civilians. Collateral harm is endemic to war and comprises permissible but unavoidable death or injury following necessary and proportionate military operations. Although state armies sometimes offer condolence payments for civilian death, injury, and property loss, they deny liability. Instead, they use compensation to enhance counterinsurgency efforts and assuage feelings of agent regret. As part of the medical rules of eligibility, Coalition forces in Iraq and Afghanistan also provided medical care to victims of collateral harm. However, they denied care to similarly sick or injured civilians. While compensation is often justified to cure the harm civilians suffer, the differential use of medical resources is not. Rather, medical care remains subject to the principle of beneficence and medical need. The duty to provide civilian healthcare in war, particularly in wars of humanitarian intervention, is far-reaching and imposes significant costs that military and medical ethics are yet to recognize.

6.
ACS Chem Neurosci ; 15(3): 503-516, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38194353

The molecular determinants of amyloid protein misfolding and aggregation are key for the development of therapeutic interventions in neurodegenerative disease. Although small synthetic molecules, bifunctional molecules, and natural products offer a potentially advantageous approach to therapeutics to remodel aggregation, their evaluation requires new platforms that are informed at the molecular level. To that end, we chose pulsed hydrogen/deuterium exchange mass spectrometry (HDX-MS) to discern the phenomena of aggregation modulation for a model system of alpha synuclein (αS) and resveratrol, an antiamyloid compound. We invoked, as a complement to HDX, advanced kinetic modeling described here to illuminate the details of aggregation and to determine the number of oligomeric populations by kinetically fitting the experimental data under conditions of limited proteolysis. The misfolding of αS is most evident within and nearby the nonamyloid-ß component region, and resveratrol significantly remodels that aggregation. HDX distinguishes readily a less solvent-accessible, more structured oligomer that coexists with a solvent-accessible, more disordered oligomer during aggregation. A view of the misfolding emerges from time-dependent changes in the fractional species across the protein with or without resveratrol, while details were determined through kinetic modeling of the protected species. A detailed picture of the inhibitory action of resveratrol with time and regional specificity emerges, a picture that can be obtained for other inhibitors and amyloid proteins. Moreover, the model reveals that new states of aggregation are sampled, providing new insights on amyloid formation. The findings were corroborated by circular dichroism and transmission electron microscopy.


Neurodegenerative Diseases , Resveratrol , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyloid/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Solvents
7.
Anal Chem ; 96(1): 12-17, 2024 01 09.
Article En | MEDLINE | ID: mdl-38109790

The serious impact of the Covid-19 pandemic underscores the need for rapid, reliable, and high-throughput diagnosis methods for infection. Current analytical methods, either point-of-care or centralized detection, are not able to satisfy the requirements of patient-friendly testing, high demand, and reliability of results. Here, we propose a two-point separation on-demand diagnostic strategy that uses laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) and adopts a stable yet cleavable ionic probe as a mass reporter. The use of this reporter enables ultrasensitive, interruptible, storable, restorable, and high-throughput on-demand detection. We describe a demonstration of the concept whereby we (i) design and synthesize a laser-cleavable reporter (DTPA), (ii) conjugate the reporter onto an antibody and verify the function of the conjugate, (iii) detect with good turnaround and high sensitivity the conjugated reporter, (iv) analyze quantitatively by using a laser-cleavable internal standard, and (v) identify negative and positive samples containing the spike protein. The protocol has excellent sensitivity (amol for the SARS-CoV-2 Spike S1 subunit antibody) without any amplification. This strategy is also applicable for the detection of other disease antigens besides SARS-CoV-2.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Reproducibility of Results , Mass Spectrometry/methods , Immunoassay/methods
8.
Cell Rep Med ; 4(12): 101305, 2023 12 19.
Article En | MEDLINE | ID: mdl-38039973

Most neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) target the receptor binding domain (RBD) of the spike (S) protein. Here, we characterize a panel of mAbs targeting the N-terminal domain (NTD) or other non-RBD epitopes of S. A subset of NTD mAbs inhibits SARS-CoV-2 entry at a post-attachment step and avidly binds the surface of infected cells. One neutralizing NTD mAb, SARS2-57, protects K18-hACE2 mice against SARS-CoV-2 infection in an Fc-dependent manner. Structural analysis demonstrates that SARS2-57 engages an antigenic supersite that is remodeled by deletions common to emerging variants. In neutralization escape studies with SARS2-57, this NTD site accumulates mutations, including a similar deletion, but the addition of an anti-RBD mAb prevents such escape. Thus, our study highlights a common strategy of immune evasion by SARS-CoV-2 variants and how targeting spatially distinct epitopes, including those in the NTD, may limit such escape.


Antibodies, Neutralizing , COVID-19 , Animals , Mice , SARS-CoV-2 , Antibodies, Viral , Epitopes/genetics , Antibodies, Monoclonal
9.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article En | MEDLINE | ID: mdl-38139170

We describe an investigation using structural mass spectrometry (MS) of the impact of two antibodies, 15497 and 15498, binding the highly flexible SARS-CoV-2 Nsp1 protein. We determined the epitopes and paratopes involved in the antibody-protein interactions by using hydrogen-deuterium exchange MS (HDX-MS). Notably, the Fab (Fragment antigen binding) for antibody 15498 captured a high energy form of the antigen exhibiting significant conformational changes that added flexibility over most of the Nsp1 protein. The Fab for antibody 15497, however, showed usual antigen binding behavior, revealing local changes presumably including the binding site. These findings illustrate an unusual antibody effect on an antigen and are consistent with the dynamic nature of the Nsp1 protein. Our studies suggest that this interaction capitalizes on the high flexibility of Nsp1 to undergo conformational change and be trapped in a higher energy state by binding with a specific antibody.


COVID-19 , SARS-CoV-2 , Humans , Deuterium/chemistry , Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Proteins
10.
Anal Chem ; 95(46): 16840-16849, 2023 11 21.
Article En | MEDLINE | ID: mdl-37933954

Characterizing changes in the higher order structure (HOS) of monoclonal antibodies upon stressed conditions is critical to gaining a better understanding of the product and process. One single biophysical approach may not be best suited to assess HOS comprehensively; thus, the synergy from multiple, complementary approaches improves characterization accuracy and resolution. In this study, we employed two mass spectrometry (MS )-based footprinting techniques, namely, fast photochemical oxidation of proteins (FPOP)-MS and hydrogen-deuterium exchange (HDX)-MS, supported by dynamic light scattering (DLS), differential scanning calorimetry (DSC), circular dichroism (CD), and nuclear magnetic resonance (NMR) to study changes to the HOS of a mAb upon thermal stress. The biophysical techniques report a nuanced characterization of the HOS in which CD detects no changes to the secondary or tertiary structure, yet DLS measurements show an increase in the hydrodynamic radius. DSC indicates that the stability decreases, and chemical or conformational changes accumulate with incubation time according to NMR. Furthermore, whereas HDX-MS does not indicate HOS changes, FPOP-MS footprinting reveals conformational changes at residue resolution for some amino acids. The local phenomena observed with FPOP-MS indicate that several residues show various patterns of degradation during thermal stress: no change, an increase in solvent exposure, and a biphasic response to solvent exposure. All evidences show that FPOP-MS efficiently resolves subtle structural changes and novel degradation pathways upon thermal stress treatment at residue-level resolution.


Antibodies, Monoclonal , Hydrogen Deuterium Exchange-Mass Spectrometry , Antibodies, Monoclonal/chemistry , Mass Spectrometry/methods , Magnetic Resonance Imaging , Solvents , Protein Conformation
11.
J Am Soc Mass Spectrom ; 34(12): 2700-2710, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-37967285

Membrane proteins (MPs) play a crucial role in cell signaling, molecular transport, and catalysis and thus are at the heart of designing pharmacological targets. Although structural characterization of MPs at the molecular level is essential to elucidate their biological function, it poses a significant challenge for structural biology. Although mass spectrometry-based protein footprinting may be developed into a powerful approach for studying MPs, the hydrophobic character of membrane regions makes structural characterization difficult using water-soluble footprinting reagents. Herein, we evaluated a small series of MS-based photoactivated iodine reagents with different hydrophobicities. We used tip sonication to facilitate diffusion into micelles, thus enhancing reagent access to the hydrophobic core of MPs. Quantification of the modification extent in hydrophilic extracellular and hydrophobic transmembrane domains provides structurally sensitive information at the residue-level as measured by proteolysis and LC-MS/MS for a model MP, vitamin K epoxide reductase (VKOR). It also reveals a relationship between the reagent hydrophobicity and its preferential labeling sites in the local environment. The outcome should guide the future development of chemical probes for MPs and promote a direction for relatively high-throughput information-rich characterization of MPs in biochemistry and drug discovery.


Protein Footprinting , Tandem Mass Spectrometry , Indicators and Reagents , Chromatography, Liquid , Membrane Proteins/chemistry , Hydrophobic and Hydrophilic Interactions
12.
Article En | MEDLINE | ID: mdl-37746528

Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.

13.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 292-302, 2023 Oct.
Article En | MEDLINE | ID: mdl-37750197

Irreversible protein footprinting is a mass spectrometry-based approach in which solvent-accessible sites of a protein are modified to assess high-order protein structure. Structural insights can be gained by determining the position and extents of modification. The usual approach to obtain the "footprint" is to analyze the protein through bottom-up LC-MS/MS. In this approach, the proteins are digested to yield a mixture of peptides that are then separated by LC before locating the modification sites by MS/MS. This process consumes substantial amounts of time and is difficult to accelerate for applications that require quick and high-throughput analysis. Here, we describe employing matrix-assisted laser desorption/ionization (MALDI) in-source decay (ISD) to analyze a footprinted small test protein (ubiquitin) via a top-down approach. Matrix-assisted laser desorption/ionization is easily adapted for high-throughput analysis, and top-down strategies can avoid lengthy proteolysis and LC separation. We optimized the method with model peptides and then demonstrated its feasibility on ubiquitin submitted to two types of footprinting. We found that MALDI ISD can produce a comprehensive set of fragment ions for small proteins, affording footprinting information in a fast manner and giving results that agree with the established methods, and serve as a rough measure of protein solvent accessibility. To assist in the implementation of the MALDI approach, we developed a method of processing top-down ISD data.


Protein Footprinting , Tandem Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Chromatography, Liquid , Proteins/chemistry , Peptides/chemistry , Ubiquitin/chemistry , Solvents
14.
J Mol Biol ; 435(20): 168241, 2023 10 15.
Article En | MEDLINE | ID: mdl-37598728

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.


Ebolavirus , Hemorrhagic Fever, Ebola , Inclusion Bodies , Nucleoproteins , Virus Replication , Humans , Ebolavirus/metabolism , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Inclusion Bodies/virology , Nucleoproteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
16.
Biochemistry ; 62(15): 2269-2279, 2023 08 01.
Article En | MEDLINE | ID: mdl-37459251

G-quadruplexes are thought to play an important role in gene regulation and telomere maintenance, but developing probes for their presence and location is challenging due to their transitory and highly dynamic nature. The majority of probes for G-quadruplexes have relied on antibody or small-molecule binding agents, many of which can also alter the dynamics and relative populations of G-quadruplexes. Recently, it was discovered that ultraviolet B (UVB) irradiation of human telomeric DNA and various G-quadruplex forming sequences found in human promoters, as well as reverse Hoogsteen hairpins, produces a unique class of non-adjacent anti cyclobutane pyrimidine dimers (CPDs). Therefore, one can envision using a pulse of UVB light to irreversibly trap these non-B DNA structures via anti CPD formation without perturbing their dynamics, after which the anti CPDs can be identified and mapped. As a first step toward this goal, we report radioactive post- and pre-labeling assays for the detection of non-adjacent CPDs and illustrate their use in detecting trans,anti T=(T) CPD formation in a human telomeric DNA sequence. Both assays make use of snake venom phosphodiesterase (SVP) to degrade the trans,anti T=(T) CPD-containing DNA to the tetranucleotide pTT=(pTT) corresponding to CPD formation between the underlined T's of two separate dinucleotides while degrading the adjacent syn TT CPDs to the trinucleotide pGT=T. In the post-labeling assay, calf intestinal phosphodiesterase is used to dephosphorylate the tetranucleotides, which are then rephosphorylated with kinase and [32P]-ATP to produce radiolabeled mono- and diphosphorylated tetranucleotides. The tetranucleotides are confirmed to be non-adjacent CPDs by 254 nm photoreversion to the dinucleotide p*TT. In the pre-labeling assay, radiolabeled phosphates are introduced into non-adjacent CPD-forming sites by ligation prior to irradiation, thereby eliminating the dephosphorylation and rephosphorylation steps. The assays are also demonstrated to detect the stereoisomeric cis,anti T=(T) CPD.


G-Quadruplexes , Humans , DNA/chemistry , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/radiation effects , Ultraviolet Rays , DNA Damage
17.
Anal Chem ; 95(26): 10119-10126, 2023 07 04.
Article En | MEDLINE | ID: mdl-37351860

Protein footprinting mass spectrometry probes protein higher order structure and dynamics by labeling amino acid side-chains or backbone amides as a function of solvent accessibility. One category of footprinting uses residue-specific, irreversible covalent modifications, affording flexibility of sample processing for bottom-up analysis. Although several specific amino acid footprinting technologies are becoming established in structural proteomics, there remains a need to assess fundamental properties of new reagents before their application. Often, footprinting reagents are applied to complex or novel protein systems soon after their discovery and sometimes without a thorough investigation of potential downsides of the reagent. In this work, we assemble and test a validation workflow that utilizes cyclic peptides and a model protein to characterize benzoyl fluoride, a recently published, next-generation nucleophile footprinter. The workflow includes the characterization of potential side-chain reactive groups, reaction "quench" efficacies, reagent considerations and caveats (e.g., buffer pH), residue-specific kinetics compared to those of established reagents, and protein-wide characterization of modification sites with considerations for proteolysis. The proposed workflow serves as a starting point for improved footprinting reagent discovery, validation, and introduction, the aspects of which we recommend before applying to unknown protein systems.


Amino Acids , Proteins , Amino Acids/chemistry , Workflow , Proteins/chemistry , Mass Spectrometry/methods , Protein Footprinting/methods
18.
Membranes (Basel) ; 13(5)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37233518

Understanding the higher-order structure of membrane proteins (MPs), which are vital for numerous biological processes, is crucial for comprehending their function. Although several biophysical approaches have been used to study the structure of MPs, limitations exist owing to the proteins' dynamic nature and heterogeneity. Mass spectrometry (MS) is emerging as a powerful tool for investigating membrane protein structure and dynamics. Studying MPs using MS, however, must meet several challenges including the lack of stability and solubility of MPs, the complexity of the protein-membrane system, and the difficulty of digestion and detection. To meet these challenges, recent advances in MS have engendered opportunities in resolving the dynamics and structures of MP. This article reviews achievements over the past few years that enable the study of MPs by MS. We first introduce recent advances in hydrogen deuterium exchange and native mass spectrometry for MPs and then focus on those footprinting methods that report on protein structure.

19.
Biochemistry ; 62(11): 1744-1754, 2023 06 06.
Article En | MEDLINE | ID: mdl-37205707

A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.


COVID-19 , SARS-CoV-2 , Humans , Protein Biosynthesis , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism
20.
Blood Adv ; 7(10): 2271-2282, 2023 05 23.
Article En | MEDLINE | ID: mdl-36508285

Missense vitamin K epoxide reductase (VKOR) mutations in patients cause resistance to warfarin treatment but not abnormal bleeding due to defective VKOR activity. The underlying mechanism of these phenotypes remains unknown. Here we show that the redox state of these mutants is essential to their activity and warfarin resistance. Using a mass spectrometry-based footprinting method, we found that severe warfarin-resistant mutations change the VKOR active site to an aberrantly reduced state in cells. Molecular dynamics simulation based on our recent crystal structures of VKOR reveals that these mutations induce an artificial opening of the protein conformation that increases access of small molecules, enabling them to reduce the active site and generating constitutive activity uninhibited by warfarin. Increased activity also compensates for the weakened substrate binding caused by these mutations, thereby maintaining normal VKOR function. The uninhibited nature of severe resistance mutations suggests that patients showing signs of such mutations should be treated by alternative anticoagulation strategies.


Metabolism, Inborn Errors , Warfarin , Humans , Warfarin/pharmacology , Vitamin K Epoxide Reductases/chemistry , Anticoagulants/pharmacology
...